Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
LC GC North America ; 40(3):125-127, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-20232686

RESUMEN

In 2002, the first fully humanized mAb was approved by the U.S. Food and Drug Administration (FDA) (3). [...]the biopharmaceutical industry is still in its infancy and new, more complex products are in development and will ikely dominant the market in the future. [...]the most common forms of LC-MS have limitations when characterizing large macromolecules (4). [...]in this column, we discuss the potential for charge detection MS (CDMS) as an analytical tool for characterizing large, complex, and heterogenous biopharmaceuticals. [...]in October 2021 at the American Association for Mass Spectrometry (ASMS) annua meeting in Philadelphia, TrueMass presented the first commercial CDMS (6,7). The cylinder is often inside an electrostatic linear ion trap (ELIT) instrument, where ions oscillate back and forth. [...]the oscillation frequency gives the m/z and the charge is determined by the magnitude.

2.
Proteins ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: covidwho-20234108

RESUMEN

The RNA-dependent RNA polymerase (RdRp) complex of SARS-CoV-2 lies at the core of its replication and transcription processes. The interfaces between holo-RdRp subunits are highly conserved, facilitating the design of inhibitors with high affinity for the interaction interface hotspots. We, therefore, take this as a model protein complex for the application of a structural bioinformatics protocol to design peptides that inhibit RdRp complexation by preferential binding at the interface of its core subunit nonstructural protein, nsp12, with accessory factor nsp7. Here, the interaction hotspots of the nsp7-nsp12 subunit of RdRp, determined from a long molecular dynamics trajectory, are used as a template. A large library of peptide sequences constructed from multiple hotspot motifs of nsp12 is screened in-silico to determine sequences with high geometric complementarity and interaction specificity for the binding interface of nsp7 (target) in the complex. Two lead designed peptides are extensively characterized using orthogonal bioanalytical methods to determine their suitability for inhibition of RdRp complexation. Binding affinity of these peptides to accessory factor nsp7, determined using a surface plasmon resonance (SPR) assay, is slightly better than that of nsp12: dissociation constant of 133nM and 167nM, respectively, compared to 473nM for nsp12. A competitive ELISA is used to quantify inhibition of nsp7-nsp12 complexation, with one of the lead peptides giving an IC50 of 25µM . Cell penetrability and cytotoxicity are characterized using a cargo delivery assay and MTT cytotoxicity assay, respectively. Overall, this work presents a proof-of-concept of an approach for rational discovery of peptide inhibitors of SARS-CoV-2 protein-protein interactions.

3.
J Biomol Struct Dyn ; 40(13): 6039-6051, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2272318

RESUMEN

RNA-dependent RNA polymerase (RdRp), also called nsp12, is considered a promising but challenging drug target for inhibiting replication and hence, the growth of various RNA-viruses. In this report, a computational study is performed to offer insights on the binding of Remdesivir and Galidesivir with SARS-CoV2 RdRp with natural substrate, ATP, as the control. It was observed that Remdesivir and Galidesivir exhibited similar binding energies for their best docked poses, -6.6 kcal/mole and -6.2 kcal/mole, respectively. ATP also displayed comparative and strong binding free energy of -6.3 kcal/mole in the catalytic site of RdRp. However, their binding locations within the active site are distinct. Further, the interaction of catalytic site residues (Asp760, Asp761, and Asp618) with Remdesivir and Galidesivir is comprehensively examined. Conformational changes of RdRp and bound molecules are demonstrated using 100 ns explicit solvent simulation of the protein-ligand complex. Simulation suggests that Galidesivir binds at the non-catalytic location and its binding strength is relatively weaker than ATP and Remdesivir. Remdesivir also binds at the catalytic site and showed high potency to inhibit the function of RdRp. Binding of co-factor units nsp7 and nsp8 with RdRp (nsp12) complexed with Remdesivir and Galidesivir was also examined. MMPBSA binding energy for all three complexes has been computed across the 100 ns simulation trajectory. Overall, this study suggests, Remdesivir has anti-RdRp activity via binding at a catalytic site. In contrast, Galidesivir may not have direct anti-RdRp activity but it can induce a conformational change in the RNA polymerase.


Asunto(s)
Antivirales , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Adenosina Trifosfato/metabolismo , Antivirales/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
4.
Int J Biol Macromol ; 200: 428-437, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1633983

RESUMEN

Nucleocapsid protein (N protein) is the primary antigen of the virus for development of sensitive diagnostic assays of COVID-19. In this paper, we demonstrate the significant impact of dimerization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N-protein on sensitivity of enzyme-linked immunosorbent assay (ELISA) based diagnostics. The expressed purified protein from E. coli is composed of dimeric and monomeric forms, which have been further characterized using biophysical and immunological techniques. Indirect ELISA indicated elevated susceptibility of the dimeric form of the nucleocapsid protein for identification of protein-specific monoclonal antibody as compared to the monomeric form. This finding also confirmed with the modelled structure of monomeric and dimeric nucleocapsid protein via HHPred software and its solvent accessible surface area, which indicates higher stability and antigenicity of the dimeric type as compared to the monomeric form. The sensitivity and specificity of the ELISA at 95% CI are 99.0% (94.5-99.9) and 95.0% (83.0-99.4), respectively, for the highest purified dimeric form of the N protein. As a result, using the highest purified dimeric form will improve the sensitivity of the current nucleocapsid-dependent ELISA for COVID-19 diagnosis, and manufacturers should monitor and maintain the monomer-dimer composition for accurate and robust diagnostics.


Asunto(s)
Prueba de COVID-19/métodos , Proteínas de la Nucleocápside de Coronavirus/química , Ensayo de Inmunoadsorción Enzimática/métodos , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , Dicroismo Circular , Proteínas de la Nucleocápside de Coronavirus/biosíntesis , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/aislamiento & purificación , Dimerización , Epítopos/química , Escherichia coli/genética , Humanos , Inmunoglobulina G/inmunología , Modelos Moleculares , Fosfoproteínas/biosíntesis , Fosfoproteínas/química , Fosfoproteínas/inmunología , Fosfoproteínas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Sensibilidad y Especificidad
5.
Mol Divers ; 26(5): 2613-2629, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1616204

RESUMEN

Several existing drugs have gained initial consideration due to their therapeutic characteristics against COVID-19 (Corona Virus Disease 2019). Hydroxychloroquine (HCQ) was proposed as possible therapy for shortening the duration of COVID-19, but soon after this, it was discarded. Similarly, known antiviral compounds were also proposed and investigated to treat COVID-19. We report a pharmacophore screening using essential chemical groups derived from HCQ and known antivirals to search a natural compound chemical space. Molecular docking of HCQ under physiological condition with spike protein, 3C-like protease (3CLpro), and RNA-dependent RNA polymerase (RdRp) of SARS-CoV2 showed - 8.52 kcal/mole binding score with RdRp, while the other two proteins showed relatively weaker binding affinity. Docked complex of RdRp-HCQ is further examined using 100 ns molecular dynamic simulation. Docking and simulation study confirmed active chemical moieties of HCQ, treated as 6-point pharmacophore to screen ZINC natural compound database. Pharmacophore screening resulted in the identification of potent hit molecule [(3S,3aR,6R,6aS)-3-(5-phenylsulfanyltetrazol-1-yl)-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan-6-yl]N-naphthalen-ylcarbamate from natural compound library. Additionally, a set of antiviral compounds with similar chemical scaffolds are also used to design a separate ligand-based pharmacophore screening. Antiviral pharmacophore screening produced a potent hit 4-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)-(2-hydroxyphenyl)methyl]-1,5-dimethyl-2-phenylpyrazol-3-one containing essential moieties that showed affinity towards RdRp. Further, both these screened compounds are docked (- 8.69 and - 8.86 kcal/mol) and simulated with RdRp protein for 100 ns in explicit solvent medium. They bind at the active site of RdRp and form direct/indirect interaction with ASP618, ASP760, and ASP761 catalytic residues of the protein. Successively, their molecular mechanics Poisson Boltzmann surface area (MMPBSA) binding energies are calculated over the simulation trajectory to determine the dynamic atomistic interaction details. Overall, this study proposes two key natural chemical moieties: (a) tetrazol and (b) phenylpyrazol that can be investigated as a potential chemical group to design inhibitors against SARS-CoV2 RdRp.


Asunto(s)
COVID-19 , ARN Polimerasa Dependiente del ARN , Antivirales/química , Antivirales/farmacología , Furanos , Humanos , Hidroxicloroquina , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas/metabolismo , ARN Viral , SARS-CoV-2 , Solventes , Glicoproteína de la Espiga del Coronavirus , Zinc
6.
J Chem Inf Model ; 61(11): 5708-5718, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1483076

RESUMEN

The biggest challenge in medical management and control of the COVID-19 pandemic is the nonavailability of the treatment molecules. While vaccines and other biotherapeutic products for managing COVID-19 have reached the market, a small-molecule cure is yet to be developed. This is relevant because the cost of production, storage, and ease of distribution of a small-molecule drug are significantly more favorable than those of biologics. In this paper, we present a multicompound approach, where two drug molecules are administered concurrently to offer an effective therapy for COVID-19. The co-action of the two compounds, each derived from natural origins, has been demonstrated against the 3CL protease, already recognized as a potential drug target for inhibiting SARS-CoV-2. The pair of compounds pursued in this study are flavonoid and naphthalene scaffold. Individually, they offer ∼30 to 35% inhibition at 10 µM. Comprehensive docking and molecular dynamics simulations elucidate that these compounds exhibit excellent binding in the process, which however quickly deteriorates, and the ligand is separated from the binding site. This suggests that while the ligands initially bind with the protease, they are unable to maintain it for an extended period. However, the simulation showed that a simultaneous docked complex of both the compounds together with the protein boosts the stronger binding for a sufficient time. The enzyme assay exhibited 97 and 85% inhibition activity when both compounds were used together at 100 and 50 µM, respectively. Later, a multiconcentration assay was used to determine the coinhibitory activity, and it was observed that the compounds have ∼20 to 30% inhibition activity even at lower concentrations of 0.5 and 1 µM. Surface plasmon resonance was used to measure the binding of the compounds, and when used together, the compounds had a 10-fold greater binding affinity. Thus, the results demonstrate a synergistic mechanism between the two compounds that enhances the inhibition activity against SARS-CoV-2 3CL protease.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología
7.
AIChE J ; 67(9): e17359, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1287314

RESUMEN

SARS-CoV-2, a novel coronavirus spreading worldwide, was declared a pandemic by the World Health Organization 3 months after the outbreak. Termed as COVID-19, airborne or surface transmission occurs as droplets/aerosols and seems to be reduced by social distancing and wearing mask. Demographic and geo-temporal factors like population density, temperature, healthcare system efficiency index and lockdown stringency index also influence the COVID-19 epidemiological curve. In the present study, an attempt is made to relate these factors with curve characteristics (mean and variance) using the classical residence time distribution analysis. An analogy is drawn between the continuous stirred tank reactor and infection in a given country. The 435 days dataset for 15 countries, where the first wave of epidemic is almost ending, have been considered in this study. Using method of moments technique, dispersion coefficient has been calculated. Regression analysis has been conducted to relate parameters with the curve characteristics.

8.
J Chem Technol Biotechnol ; 95(7): 1841, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-616291
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA